понедельник, 5 февраля 2018 г.

Графен — метаматериал грядущей технотронной революции


Графен — высокотехнологичный метаматериал с множеством уникальных свойств и растущим набором потенциальных применений. Графен, без преуменьшения, является источником для мировой технологической революции.

Графен — это двумерный материал, представляющий собой форму углерода, толщиной в один атом. С тех пор как в 2010 году выпускникам МФТИ Андрею Гейму и Константину Новоселову присудили Нобелевскую премию за передовые опыты с этим новым материалом, в мире начался настоящий графеновый бум.

Графен — это всего лишь одна из форм углерода, который может существовать во множестве кристаллических модификаций: например, как графит, алмаз, фуллерены или углеродные нанотрубки. Непосредственно графен можно представить в виде одной плоскости объемного кристалла графита — это первый кристалл толщиной всего лишь в один атом, экспериментально полученный в лабораторных условиях.

С одной стороны это очень простой материал, с другой очень сложно совместить двумерный материал толщиной в один атом с трехмерным миром приборов. Внешний мир — электроды, подложки и т.п. — оказывает влияние на графен, его свойства — это все очень трудно исследовать. Впервые это удалось сделать в Манчестерском университете. С тех пор пионерские работы были процитированы в ведущих научных журналах более 100 тысяч раз.

Интерес к графену по сей день остается беспрецедентным. В мире фактически началась новая гонка — за лидерство на зарождающемся рынке двумерных материалов. Государства в разных частях света тратят миллиарды долларов на графеновые исследования.


Казалось бы на данный момент графен достаточно хорошо исследован, но тем не менее он еще таит в себе сюрпризы. Например, из графена можно удалять атомы углерода (с какой-то периодичностью или в виде какого-то узора) — получается материал с другими свойствами. Можно в графен добавлять атомы других материалов — это еще один материал с новыми свойствами.

Свойства графена во многом определяются подложкой, например, химические свойства графена в зависимости от материала подложки еще не изучены. Очень мало информации и по физическим свойствам в зависимости от материала подложки. Техника постоянно совершенствуется, мы учимся работать со все меньшими и меньшими объектами и получаем все больше интересной информации. Одна из ключевых задач — встроить графен (двумерные материалы) в существующий цикл микроэлектронного производства, пока все такие устройства делаются вручную.

Графен может стать основой для нового поколения гиперспектральных камер, элементной базы для космической техники или беспилотных летательных аппаратов, материалом для сверхпрочных бронежилетов и многого другого.

Разнообразие применений графена возможно из-за его уникальных физико-химических свойств, которые моментально сделали этот двумерный материал объектом для фундаментальных исследований. Так, двумерность графена, а также характерное для него особое поведение электронов, открыли возможность для экспериментальной демонстрации различных явлений квантовой физики, среди которых квантовый эффект Холла, парадокс Клейна, сверхпроводимость и многие другие. Графен обладает высокой электропроводностью и рекордной среди всех известных материалов теплопроводностью. Для него характерна высокая прочность (в 200 раз прочнее стали) и гибкость, химическая и термическая стабильность, а также самая большая площадь поверхности на единицу массы.

Конструкции из графена могут быть столь легки, что не примнут даже лепестки цветка

У рассматриваемого материала интересные оптические свойства: является перспективным материалом для создания оптических инструментов, работающих одновременно в широком диапазоне частот — от видимого света до терагерцового или даже микроволнового излучения. Это лишь небольшая часть из интересных особенностей графена, но главное — его свойства сильно зависят от материала подложки, наличия дефектов и примесей, внешних воздействий и многого другого. Так что поле для научных изысканий здесь очень велико, и вложения в эту сферу только продолжат расти.

Исследовательский бум

Поэтому доля научных публикаций с упоминанием графена год от года непрерывно растет. Если в 2010 году мы имели 0,2% относительно всех научных публикаций, то в 2017 году — это уже 1,3%, согласно базе данных научных публикаций Web of Science.

Абсолютным лидером в сфере графеновых исследований остается Китай: этой стране принадлежит почти половина всех научных публикаций с упоминанием графена. 12% самых высокоцитируемых работ, написанных китайскими учеными в 2016 году, — публикации о графене. Уже сейчас с Китаем сложно конкурировать даже США, но говорить о финальной расстановке сил пока рано.

Министр финансов Великобритании Джордж Осборн заявил, что Британия, где расположен один из крупнейших графеновых центров в мире, получивший название «Родина графена», стремится удержать мировое лидерство в освоении графеновых технологий в условиях серьезной конкуренции со стороны Китая и Южной Кореи. К гонке за лидерство подключились исследовательские центры Сингапура, Германии, Австралии, Японии, стремительно догоняющей их Индии и… Ирана.


При этом новые научные результаты — не главное в истории с графеном. Выявляемые и исследуемые уникальные свойства графена позволяют создать на его основе целый класс устройств нового типа, а потому исследовательская гонка сейчас — это гонка за захват рынка графеновых технологий. Причем речь далеко не всегда идет о принципиально новых рынках. Графен рассматривается в качестве материала, который изменит авиастроение, технологии освоения космоса, вооружение и военную технику, а также энергетическую отрасль. Все это — лишь вопрос времени. Не уделяя должного внимания материалам из двумерного мира, можно потерять позиции в том числе и в этих отраслях. Необходимо осознать важную вещь: в мире произошла графеновая революция, как когда-то с изобретением транзистора состоялась революция в электронике.

Каких технологий нам стоит ожидать и когда они выйдут к массовому потребителю?

Чистая вода

По подсчетам ООН, «дефицит воды затрагивает более 40% мирового населения и, по прогнозам, будет расти». Фильтры на основе графена вполне могли бы стать решением. Джиро Абрахам из Манчестерского университета помог разработать масштабируемые сита из графенового оксида для фильтрации морской воды. Он утверждает, что «разработанные мембраны полезны не только для опреснения, но и для изменения размера пор в атомных масштабах, позволяющего фильтровать ионы в соответствии с их размерами».

Кроме того, исследователи из Университета Монаш и Университета Кентукки разработали графеновые фильтры, которые могут отфильтровывать что угодно, по размерам превышающее один нанометр. Они говорят, что их фильтры могут быть использованы для фильтрации химических веществ, вирусов или бактерий в жидкостях. Их можно использовать для очистки воды, молочных продуктов или вина или для производства фармацевтических препаратов.

Выбросы углерода

Конечно, одним из главных виновников изменения климата является чрезмерное количество углекислого газа, выделяющегося в атмосферу. Графеновые мембраны могли бы улавливать эти выбросы.
Ученые из Университета Южной Каролины и Университета Ханьянг в Южной Корее самостоятельно разработали фильтры на основе графена, которые могут использоваться для отделения нежелательных газов от промышленных, коммерческих и жилых выбросов. Генри Фоли из Университета Миссури утверждал, что эти открытия стали «чем-то вроде святого Грааля».

С их помощью мир мог бы остановить рост CO2 в атмосфере, особенно сейчас, когда мы преодолели важный показатель в 400 частей на миллион.

Здравоохранение

Множество людей по всему миру не имеют доступа к адекватному здравоохранению, но графен может перевернуть и этот вопрос вверх дном.

Прежде всего, высокая механическая прочность графена делает его идеальным материалом для замены частей тела, таких как кости, и благодаря своей проводимости он может заменить части тела, которые требуют электрического тока, например, органы и нервы. Фактически ученые из Мичиганского технологического университета работают над применением 3D-принтеров для печати нервов на основе графена, и эта команда разрабатывает биосовместимые материалы, используя графен для проведения электричества.

Графен также можно использовать для создания биомедицинских датчиков для обнаружения болезней, вирусов и других токсинов. Поскольку воздействию подвергается каждый атом графена — из-за того, что графен толщиной в один атом, — датчики могут быть чрезвычайно чувствительными. Датчики на основе оксида графена могли бы обнаруживать токсины на уровнях, в 10 раз меньших, чем требуют современные датчики. Их можно было бы размещать на коже или под ней и предоставлять врачам и ученым огромное количество информации.

Китайские ученые даже создали датчик, способный обнаруживать всего одну раковую клетку. Более того, ученые из Манчестерского университета сообщают, что оксид графена может находить и нейтрализовать раковые стволовые клетки.

Инфраструктура

Композиты, усиленные графеном, и другие строительные материалы могут создать прочную инфраструктуру, содействовать обеспечению всеохватной и устойчивой индустриализации.

Недавние исследования показали, что чем больше добавляется графена, тем лучше становится композит. Это значит, графен можно добавлять к строительным материалам — бетону, алюминию, что сделает их прочнее и легче.

Резина также улучшается благодаря добавлению графена. Исследование, проведенное GrapheneFlagship и ее партнером Avanzare, сообщает, что «графен усиливает функциональность резины, за счет сочетания электрической проводимости графена и механической прочности с отличной коррозионной стойкостью». Из таких резин можно было бы делать более стойкие к коррозии трубы.

Энергия

Из-за легкости, проводимости и прочности на растяжение графен может сделать экологичную энергию более эффективной и дешевой. Например, графеновые композиты можно было бы использовать для создания более универсальных солнечных панелей. Исследователи из Массачусетского технологического института говорят, что «при помощи графена возможно сделать гибкие, недорогие и прозрачные солнечные элементы, которые могут превратить практически любую поверхность в источник электроэнергии». Благодаря графеновым композитам также возможно создание больших и легких ветровых турбин.

Кроме того, графен уже используется для улучшения традиционных литий-ионных батарей, которые обычно используются в бытовой электронике. Проводятся также исследования графеновых аэрогелей для хранения энергии и суперконденсаторов. Все это понадобится для крупномасштабного хранения чистой энергии.

Более того, графен может стать источником… бесконечной чистой энергии! Дело в том, что случайные колебания атомов углерода создают в материале подобие ряби, похожей на волны на поверхности океана. Эти движения позволяют графену существовать в двумерной форме. Потому ученые из Университета Арканзаса решили использовать эти колебания как источник энергии.

Физики создали устройство для сбора вибрационной энергии. Листы графена, покрытые отрицательно заряженными частицами, разместили между двумя металлическими электродами. Как только графен поднимался «волной» вверх, то верхний электрод становился положительно заряженным. Когда графен опускался, то положительно заряженным оказывался нижний электрод. В результате формировался переменный ток.



Пока такой метод позволяет производить электроэнергию в микроскопических масштабах. Каждая «волна» генерировала всего 10 пиковатт. Однако листы графена большей площади способны вырабатывать больше энергии. Полученного ими электричества хватило бы для непрерывной работы наручных часов. Открытие пока не удастся масштабировать, однако устройство американских ученых может стать основой для нового типа батареи, которая будет производить энергию бесконечно без какой-либо подзарядки.

Терагерцовая электроника

Около пяти лет назад фотоприемные приборы на основе графена вошли в терагерцовый диапазон из видимого и инфракрасного электромагнитного спектра. Это был довольно важный шаг, способный вывести всю современную электронику на качественно новый уровень. Терагерцовое излучение проникает сквозь различные материалы, на что не способны видимое и инфракрасное излучения. Это открывает ряд потенциальных применений в области медицины, контроле различных процессов и даже в интеллектуальных транспортных средствах (которые нам обещают подарить беспроводные сети следующего поколения – 5G).

Терагерцовое излучение занимает в спектре электромагнитных волн промежуточное место между СВЧ- и ИК-излучением. Благодаря высокой частоте колебаний, оно может обеспечить еще более высокую скорость передачи данных по беспроводным сетям, а небольшая энергия квантов и хорошая проникающая способность делают его незаменимым инструментом для медицинской диагностики. Также, терагерцовые датчики могут быть использованы при досмотре людей и их багажа. Это возможно благодаря тому, что графеновый детектор может замерить количество отраженного от объекта терагерцового излучения, а после оцифровки результатов измерения, полученные данные могут быть преобразованы в изображение структуры сканируемого объекта. Терагерцовое излучение поглощается жидкостями и хорошо отражается от плотных объектов (костная ткань, металлы и пр.), благодаря чему можно легко использовать терагерцовое оборудование взамен рентгеновских аппаратов. Здесь возникает ряд преимуществ по сравнению с обычным рентгеном, и наиболее важное заключается в том, что терагерцовое излучение относится к неионизирующему, что позволяет применять их везде, не оказывая при этом негативного воздействия на людей.

Команде из Chalmers University удалось создать устройство, которое сочетает в себе гибкость и функционал по обнаружению терагерцового излучения, что может позволить использовать его в IoT-устройствах с высокой пропускной способностью. В приведенном ниже видео вы можете увидеть несколько приложений, которые, по мнению исследователей, могут использовать предложенные детекторы.



Ключевой особенностью, предложенного физиками варианта выполнения детектора, является использование механических, то есть подвижных, деталей для повышения чувствительности прибора. Напомним, что ключевой особенностью графена является то, что он может быть выполнен с наименьшей возможной толщиной в один атом и при этом обладает высокой прочностью и жесткостью:


Достоинства графена заключаются не только в его уникальных механических свойствах, двумерный углерод еще является и хорошим проводником электрического тока и отличается высокой подвижностью носителей заряда. Сочетание механических и электрофизических характеристик графена обеспечит при взаимодействии с терагерцовым излучением сразу несколько положительных эффектов, которые позволят создать в будущем сверхпрочные гибкие и прозрачные гаджеты. Не так давно подобные вещи казались чем-то футуристичным, однако сейчас уже есть практические реализации подобных устройств:

Слева всего лишь концепт, а справа – реальная разработка Тайваньской компании Polytron Technologies

С помощью графена появляется возможность принимать модулированные сигналы, то детектор на основе графена сможет не только фиксировать наличие терагерцового излучения, но и принимать закодированную в сигнале информацию и передавать ее дальше для обработки. Поэтому если сейчас наблюдается тенденция увеличения частот в системах беспроводной связи, то электроника на основе графена будет лежать в основе работы беспроводных устройств следующего поколения.

Поролон

Графеновый поролон может стать самым теплопроводимым материалом в мире, утверждает ведущий производитель полиуретановой пены, компания Мурсия, которая включила этот материал в ассортимент своей продукции.

После длительного периода исследований и испытаний в своих лабораториях, они сумели успешно внедрить этот материал. Графеновый поролон имеет высокую теплопроводимость и уменьшает образование клещей и бактерий внутри эластичного пенополиуретана. Он может служить как прекрасный утеплитель в стенах, так и в мягкой мебели и салоне автомобиля. Видимо, в салоне GTA Spano его уже применили.

Что важно, при производстве графенового поролона не используется метиленхлорид и значительно уменьшаются выбросы CO2, что сказывается на экологичной составляющей этого продукта.

Костная ткань

Исследователи из института медицинских наук Amrita и научно-исследовательского центра в Индии показали, что оксид графена способен восстанавливать костную ткань.
Они обнаружили, что графеновые чешуйки оксида ускоряют размножение стволовых клеток и регенерацию клеток костной ткани.

Сейчас идет активная проверка графенового оксида на токсичность и если все пройдет успешно, то вскоре мы можем ожидать новых революционных методов лечения переломов костей.

Лечение от рака

Ученые выявили, что при помощи оксида графена можно уничтожить раковые стволовые клетки, в то же время, никак не влияя на здоровые клетки. Если включить лечение оксидом графена в комплексное лечение при раковых опухолях, то разрастание опухоли прекратиться, а также графен поможет предотвратить метастазирование и повторное развитие опухоли в будущем. Такие заключения сделали специалисты после изучения свойств углеродного материала.

Специалисты предполагают, что их работа все же достигнет стадии клинических испытаний, и оксид графена можно будет применять для лечения раковых опухолей.

Радиоактивные отходы

Оксид графена быстро удаляет радиоактивные вещества из загрязненной воды, утверждают исследователи из МГУ им. Ломоносова и американского Университета Райса. Микроскопические, толщиной в атом хлопья этого материала быстро связываются с естественными и искусственными радиоизотопами и конденсируют их, превращая в твердые вещества. Сами хлопья растворимы в жидкости, и их легко производить в промышленных масштабах.

Таким образом можно очистить загрязненные участки, пострадавшие от выбросов ядерных отходов, как например на АЭС в Фукусиме. Оксид графена оказался гораздо лучше, чем бентонитовая глина и гранулированный активированный уголь, который обычно используется при ядерной очистке.

Также графеном можно очистить подземные воды, которые загрязняются при добыче нефти, газа и редкоземельных металов. И что примечательно такой метод очистки значительно дешевле традиционных.

Коммерческое применение

Помимо фундаментальных исследований коллективы по всему миру активно работают над прикладными разработками — целым классом устройств и материалов нового типа, которые могут быть созданы благодаря необычным свойствам нового материала. В одном только Китае, по данным Jiangnan Graphene Research Institute (Китай), число заявок на патенты с применением графена ещё к сентябрю 2016 года превысило 50 000.

Тонны графена

Если вы решите разобраться, как устроена графеновая отрасль, то неизбежно наткнетесь на десятки коммерческих отчетов, которые оценивают объемы рынка и ранжируют страны по количеству производимого ими графена. Например, эксперты предрекают, что емкость рынка графена к 2027 году будет составлять 3800 тонн в год. Поэтому, исследуя графеновый рынок, неспециалист может решить, что речь идет о мешках, бочках или вагонах с графеном — о больших объемах двумерного материала, в производстве которого соревнуются Китай, США, весь Евросоюз и другие страны.

Разумеется, это не так.

Сам по себе графен не стоит рассматривать как продукцию для экспорта, и обогатиться на нем нельзя. Производство графена будет расти, что неизбежно приведет к снижению его стоимости, ведь получить сам графен не проблема. Если первые эксперименты были выполнены на небольших чешуйках графена, которые отслаивались от графита с помощью клейкой ленты, то сейчас удается получать высококачественный графен большой площади осаждением в печи при высокой температуре на медную фольгу — это достаточно просто и дешево. Основой для синтеза графена также являются углеводородные газы или даже нефть. Например, совсем недавно ученым из США удалось разработать способ получения графена из ацетилена — природного газа.


Сейчас графен уже продается менее чем за один евро за квадратный сантиметр, а к 2022 году, по прогнозам одной из крупнейших компаний-производителей графена, будет стоить меньше евроцента за квадратный сантиметр. То есть квадратный метр графена обойдется исследователям менее чем в сто евро.

Рынок графеновых технологий

По последним данным, в мире насчитывается 142 организации, которые производят графен. Однако в действительности рынок графена — это не килограммы «графенового сырья», а технологии на его основе: прикладные разработки и патенты. Дело в том, что графен, как и другие двумерные материалы, как уже было сказано ранее, можно комбинировать друг с другом, получая принципиально новые свойства. Так, например, применение графена и оксида графена в биочипах, технология создания которых существует уже несколько лет, позволяет в десятки раз увеличить их чувствительность. Использование графена в качестве одного из фоточувствительных элементов матриц камер позволяет в сотни раз увеличить их чувствительность и существенно расширить их спектральный диапазон.

Возможности таких комбинаций практически безграничны, и вряд ли все из них мы сможем реализовать в перспективе хотя бы ближайших пятидесяти лет. Внедрение графена в различные устройства дает колоссальные перспективы. Но именно здесь пока нет однозначных результатов.

Технологии в массы

Действительно, массовых графеновых технологий, несмотря на серьезные финансовые вливания в эту область, до сих пор не появилось. Основная сложность с широкомасштабным применением графена — создание работающего устройства. Графен — двумерный материал, и использовать его в трехмерном мире достаточно сложно.

Совмещение технологий производства графена с существующими технологиями микроэлектроники и других отраслей промышленности позволит создать целый класс новых продуктов, но как раз это сейчас и составляет основную трудность. Выращенный графен можно переносить на ту или иную подложку вручную, но это плохо соотносится с технологиями массового производства. Именно над проблемой интеграции графена в различные устройства работают многие ученые и исследовательские центры: ведутся исследования по низкотемпературному росту графена на различных подложках и разрабатываются автоматизированные технологии его переноса. На решение этой проблемы, например, нацелен графеновый центр Samsung. Этой проблемой занимаемся и датская компания Newtec.

Ее решение — лишь вопрос времени, а потому, если еще пару лет назад в мире был определенный скепсис по части прикладных разработок на основе графена, то сейчас это уже ничем не сдерживаемый оптимизм.

Применения

Сейчас уже с уверенностью можно сказать: во всех устройствах будущего в том или ином виде будет присутствовать графен или другой двумерный материал. Перечислить все потенциальные применения графена невозможно…

Его можно совместить даже биологическими организмами! Например, ученым Университета Тренто (Италия) и Центра по разработкам с использованием графена Кембриджского университета удалось «накормить» графеном пауков, после чего те стали производить паутину, которая оказалась в несколько раз прочнее обычной. Похожую работу провели китайские исследователи, скормив графен шелкопряду и получив прочную шёлковую нить, которая проводит электричество и может быть использована, например, в носимой электронике. Таким образом, графен кардинальным образом изменит целый ряд привычных нам индустрий, и мир моды здесь отнюдь не исключение.

Так, в Центре графена в Кембриджском университете недавно был изобретен метод нанесения графена — если быть точным, так называемых графеновых чернил — на обычный хлопок, который таким образом становится электропроводным и хорошо подходит для использования в одежде носимых девайсов и сенсоров, которые будут замерять показатели здоровья (например, пульс) и окружающей среды. Во время тестов ученые создали специальный носимый сенсор, который показал, что экспериментальный материал может отслеживать до 500 циклов движений даже после десяти стирок в обычной стиральной машине, куда сегодняшнюю носимую электронику никто не засунет. Такие пробные эксперименты — уже большой шаг вперед в деле превращения простой одежды в умную.

Не менее важен и ряд других черт графена. Добавление незначительного количества графена позволяет, не меняя эстетику ткани, придать материалу новые свойства: антистатичность или гидрофобность, когда ткань становится непромокаемой. В таком случае можно перестать фантазировать о режиме сушки, как на куртке Марти Макфлая из несбывшегося 2015 года. Теплопроводность графена тоже не осталась без внимания. Так, производители продуктов из графена Directa Plus совместно с маркой спортивной одежды Colmar запустила новую линию курток, в которых графен используется как фильтр между телом и окружающей средой для максимального сохранения и равномерного распределения тепла во время занятий спортом в холодную погоду.


Отдельного упоминания заслуживают антибактериальные свойства графена, о которых споры не утихают и вряд ли скоро утихнут. Так, например, Graphene Info в своей заметке о китайской компании Shanghai Kyorene New Material Technology подчеркивает, что их графеновые ткани защищают от бактерий и ультрафиолета.

+ + +

В одном из своих интервью Андрей Гейм высказывал мысль, что выделять какую-то одну наиболее перспективную область применения даже вредно:

«Поле [применений] настолько велико, что сосредоточение в одном из направлений приведет к ослаблению развития в целом».

Так или иначе, вы можете быть уверены: в камерах ваших телефонов, в ваших очках или умных контактных линзах, любой гибкой носимой электронике, умных настенных покрытиях, в разрабатываемых сейчас биосенсорах и нейроинтерфейсах и многом другом, не говоря о новых функциональных материалах для любых применений, например, в авиастроении или оборонной сфере — будет графен.

Есть области, где этот двумерный материал используется уже сейчас. Теннисисты Новак Джокович, Энди Мюррей и Мария Шарапова играют ракетками, содержащими графен, а Билл Гейтс финансирует создание прочных и тонких графеновых презервативов. Научные конференции сопровождаются шоурумами, где стартапы и лидеры индустрии представляют свои последние разработки. Например, на выставке Mobile World Congress в фервале 2017 года был представлен концепт автомобиля с корпусом из графенового пластика. А в марте на Женевском автосалоне был презентован китайский электромобиль на основе графеновых батарей, который планирует конкурировать с Tesla. И количество приложений будет только расти.

Прогнозы рынка

Вложения в исследования графена — это вложения в светлое будущее, пусть пока и без четкого понимания, каким оно будет. Именно поэтому сейчас так сложно спрогнозировать объемы рынка через несколько лет, по текущим прогнозам, рынок графена в течение десятилетия вырастет в 30-100 раз. Но он может вырасти и в тысячи раз — достаточно только появиться умным контактным линзам с графеном, запустить в серийное производство быстрозаряжающиеся аккумуляторы или разработать любую другую технологию, которую представить сейчас мы не можем. Так же, как когда-то не могли представить, как разовьется рынок лазеров или компьютерной техники.


Двумерный мир

Материалы на основе графена изменят мир, потому что они сами по себе — это уже другой мир, двумерный. Хотя будет это не революционным новшеством, а, как подчеркивает Андрей Гейм, медленной диффузией материала в нашу повседневную жизнь.

Производство

Производство графена – процесс очень недешёвый. Однако исследователям из Канзасского государственного университета удалось создать бюджетный способ производства этого удивительного вещества.

Изобрёл новый метод производства графена учёный Крис Соренсен. Он основывается на детонации углеродосодержащих материалов в замкнутом пространстве. Другими словами, мы помещаем внутрь прочного контейнера кислород, а также ацетилен или газообразный этилен. Потом с помощью свечи зажигания взрываем данную смесь, и в результате этого процесса на стенках контейнера формируется графен.

Низкая стоимость такого способа оставляет далеко позади существующие сегодня химические и механические способы создания графена.



«Мы обнаружили очень легкодоступный способ наладить процесс производства графена в промышленных масштабах, — делится своей радостью Крис Соренсен, — наш способ имеет огромное количество преимуществ перед ныне существующими альтернативами. Во-первых, это очень дёшево. Во-вторых, существует возможность для построения крупномасштабного промышленного производства графена. В-третьих, отсутствует необходимость использования вредных химических веществ. В-четвёртых, для производства нужна энергия всего одной искры свечи зажигания».

Новый способ позволил учёным производить не миллиграммы графена в лабораторных условиях, а сразу перейти на целые граммы, что является серьёзным приростом производительности.

Самое удивительное во всей этой истории то, что учёные открыли данный способ совершенно случайно. Во время исследования углеродных аэрозольных гелей произошло возгорание, в итоге которого исследователи получили на выходе графен. Вот так простая случайность привела к маленькой, но всё же революции в производстве одного из самых перспективных материалов современности.

Экологичность

До недавнего времени серьезным изучением экологических последствий применения графена никто не занимался. Однако, после продолжительного исследования ученые из Калифорнийского университета в Риверсайде обнаружили, что графен далеко не безопасен. Он может оказывать губительное воздействие на здоровье человека и окружающую среду.

Выяснилось, что при попадании материала в грунтовые воды гексагональная структура графена начинает разрушаться, микрочастицы довольно быстро теряют стабильность, разрушаются и значительного вреда принести не могут. А вот графеновое загрязнение поверхностных вод, в которых больше органики, а жесткость ниже, может оказаться гораздо более серьезным. Молекулярная структура графена такова, что острые выступы нано-частиц материала способны разрывать мембраны клеток живых организмов, что обуславливает его токсичность.


Ученые призывают максимально тщательно изучить свойства графена до того, как его начнут активно использовать в производстве электроники. Тем не менее, вряд ли это открытие остановят человечество от масштабного применения графена. Материал обладает настолько уникальными свойствами, что заменить его попросту нечем.

Или есть?

Альтернативы графену

Действительно, учёные активно изучают возможности получения новых материалов, аналогичных графену. Существенный прогресс в последнее время был продемонстрирован в получении фосфорена.

Фосфорен  — это  материал, состоящий из одного слоя атомов фосфора.

В январе 2014 года были опубликованы работы сразу двух независимых групп, американской и китайской, которым удалось значительно продвинуться в получении фосфорена. Получают фосфорен из так называемого чёрного фосфора  —  слоистого материала, похожего на графит, из которого получают графен. Чёрный фосфор известен с 1960-х годов, но только в 2013 году начались попытки выделить из него отдельный слой. В работах, о которых идёт речь, чёрный фосфор был очищен до толщины в два - три атомных слоя. Интересно, что, как и при первом получении графена в 2004 году, для снятия лишних слоёв использовалась банальная липкая лента.

Получение новых материалов, состоящих из одного слоя атомов различных веществ, стало в последние годы одним из заметных направлений в материаловедении. Учёные даже окрестили этот тренд «постграфеновой эрой».

Проблема графена заключается в том, что в нём отсутствует так называемая запрещённая зона —  интервал энергий, которые электрону иметь запрещено. Наличие такой зоны крайне желательно, поскольку она является основой всей современной полупроводниковой электроники, позволяя создавать такие важнейшие элементы, как диоды и транзисторы.

Именно поэтому активно идут поиски веществ с высокой подвижность электронов, и одновременно с наличием запрещённой зоны. Поскольку высокая электропроводность графена во многом связана с его двумерной, плоской структурой, то и новые материалы ищут среди тех веществ, которые способны образовать двумерную сетку. В июле 2013 года путём численного моделирования удалось обнаружить 92 кандидата в такие материалы, но их экспериментальное получение оказалось связанным с большим количеством сложностей.


Как и графен, фосфорен состоит из шестиугольников, но не является полностью плоским — некоторые атомы находятся чуть выше плоскости, другие  —  чуть ниже. Это, однако, несильно замедляет электроны по сравнению с графеном. В то же время фосфор обладает запрещённой зоной, позволяющей ему в разных условиях то проводить ток, то прекращать.

Фосфорен не единственный аналог графена, состоящий из одного сорта атомов. Ранее удалось получить одноатомные слои кремния  —  силицен   и германия  —  германен. Оба эти материала обладают более высокой электропроводностью, чем фосфорен, но так же, как и графен, не имеют запрещённой зоны.

Теоретически, более интересным кандидатом является станен  (stanene) —  одноатомный слой олова, обладающий и высокой подвижностью электронов, и запрещённой зоной.


Как показали расчеты ученых-физиков из Стэнфордского университета и Национальной лаборатории линейных ускорителей SLAC американского Министерства энергетики (US Department of Energy, DOE), данный материал может стать первым в мире материалом, проводящим электрический ток со стопроцентной эффективностью. Причем, добиться такой эффективности можно как при комнатной температуре, так и при более высоких температурах, при которых работают кристаллы современных микропроцессоров.

Согласно построенной модели, в двумерном слое атомов олова должен наблюдаться квантовый спиновый эффект Холла, то есть электроны смогут перемещаться с нулевым сопротивлением вдоль краев проводника. При добавлении к станену атомов фтора эффект должен сохраняться при температурах до 100 градусов по Цельсию. Это отлично подходит для компьютерных чипов, которые работают в диапазоне температур от 40 до 90 градусов Цельсия.

Однако общей проблемой всех обсуждаемых материалов является их нестабильность. На воздухе они начинают активно окисляться и быстро разрушаются. Специальные уловки, которыми удалось стабилизировать силицен в 2012 году, все равно пока не позволяют использовать этот материал в реальных устройствах. Фосфорен должен быть более стабильным, чем его конкуренты, но его производство сложнее: для получения чёрной модификации фосфор высокой чистоты требуется помещать под огромные давления. Процесс дальнейшего снятия слоёв также пока не оптимизирован.

В любом случае сама возможность получения двумерного материала с запрещённой зоной является достаточно привлекательной для продолжения исследований в этой области, а потенциальный коммерческий успех обещает покрыть любые временные затраты.

Трехмерный графен

В 2017 году ученые Финляндии и Тайваня пошли дальше остальных и разработали способ превращения графена из двухмерного слоя углерода толщиной в один атом в трехмерные объекты при помощи лазера. В качестве демонстрации возможностей технологии они создали пирамиду высотой 60 нм, то есть в 60 раз толще листа графена.


«Мы назвали эту технологию оптической ковкой, поскольку процесс напоминает придание металлу трехмерных форм при помощи молота. В нашем случае, вместо молота выступает лазерный луч, который придает графену 3D-форму, — говорит один из учёных Мика Петтерссон. — Красота этого метода в том, что он быстрый и простой в использовании, не требует никаких дополнительных химических веществ или обработки».

Несмотря на простоту этого метода ученые были удивлены, когда увидели, что луч лазера приводит к настолько существенным изменениям в графене. Сначала они не могли понять, что именно произошло.

«Сначала мы были поражены. Экспериментальные данные казались бессмыслицей, — говорит другой учёный Пекка Коскинен. — Но постепенно, сочетая эксперимент с компьютерной симуляцией, реальность трехмерной формы и механизм ее возникновения становились все яснее».

Новый 3D-графен стабилен и обладает электронными и оптическими свойствами, отличными от обычного двумерного графена. С его помощью можно будет создавать трехмерную архитектуру для устройств, в основе которых лежит этот чудо-материал.

Квантовая природа графена

Помимо прочего, графен ещё и проявляет квантовую природу материала и соответствующее квантовое поле. Дело в том, что у углерода, который участвует именно в образовании графена, внешних электронов не три, а четыре. Три электрона создают связи между соседями; остается один электрон, который достаточно слабо связан, и он является фактически определяющим в свойствах графена. Важно также отметить, что графен — наноматериал; расстояние между двумя соседними атомами в графене — 0,14 нанометров. Графен относится к классу полуметаллов — это такие вещества, в которых энергетическая зона проводимости касается валентной зоны.

В графене четвертый электрон, который остается свободным — как бы свободным электроном проводимости, — фактически определяет свойства графена. Если мы попытаемся построить эффективную теорию, которая описывает свойства графена, то окажется, что эти электроны (взаимодействия этих электронов, их свойства) мы каким-то образом можем переформулировать через квантовую теорию поля, которая говорит, что (в каком-то энергетическом диапазоне) графен эквивалентен —  квантовой теории поля электронов и дырок, которые находятся на двумерной поверхности. А взаимодействуют эти электроны и дырки за счет трехмерного кулоновского взаимодействия.

Оказывается, что для графена применимы методы квантовой хромодинамики, а именно теории сильных взаимодействий, которые были разработаны для того, чтобы изучать другую теорию, которая тоже относится к классу сильнокоррелированных систем. Взяв методы из той теории, можно применить их и для графена.


Выводы

О графене вряд ли стоит говорить как об очередной подрывающей привычные индустрии технологии, как любят рассуждать о блокчейне и прочих участниках так называемого цикла хайпа.

Потенциал этого материала слишком широк: графен, скорее всего, через несколько лет будет использоваться при производстве компьютерных чипов, батарей, фюзеляжей самолетов, контактных линз и чего только не. Для выхода же на массовый рынок одежды графену, скорее всего, потребуется не меньше декады.


Технотронная революция и правда близко, и это не только прикладные инновации Илона Маска с его мегаломанией, но и фундаментальная графеновая революция, совершающаяся на наших глазах.

 ■ Криптоцид